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QUANTUM TIJEORY OF THE GLOWING ELECTRON. I - - -

The approximate quantum theory of the radiation of fast electrons,

moving in a magnetic field, is considered here. The conditions of the

appearance of quantum corrections of the order of n2/1 where n is the number

of the radiated harmonic, and 1 is the azimuthal quantum number, are investigated.

It is shown that these corrections contract when the total radiation intensity

2
is calculated. Quantum corrections of the order of n /1 remain in the total

intensity.

1. As a known, the classical theory of the glowing electron /1-4/,

developed recently, describes well the observed glow during the motion of

relativistic electrons in a magnetic field /5/. The classical theory of the

influence of the earth's magnetic field on the large Auer showers was given

in /6/.

Developing the quantum theory of the glowing electron /7-4/, we can

find quantum corrections for the radiation frequency, the motion trajectory,

and the radiation intensity. In /7/ it was shown that quantum corrections

for the radiations frequency have an order of n/l, which corresponds to the

energy -

E- - mc 2 (amc I J)'", (I) 

where a is the radius of the orbit, m-is the electron mass, 1 is the azimuthal

quantum number (with 1i = EaP/2c),
'

and n is the number of the radiated

harmonic. In, the same work it was shown that purely classical transitions

between circular orbits (the initial radial quantum number s and the final s'

r
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are equal to zero) are determined by a condition stronger than (1): 't 2 /I1 I

or

E inc 2 (cltic h)t '. (2)

2
When the value n /1 becomes comparable to unity, the appearance of

quantum transitions from a circular (s = 0) orbit to a noncircular one

(s' ~ 0) is possible. In work /7/ the probabilities of such transitions were

.2
calculated with a precision of up to a value of n /1. There it was also

indicated that quantum corrections for the radiation intensity have an order

of n /1. Nevertheless, from the final formulas cited in the same work it

follows that, when the total (i.e. summated for the final value of the radial

quantum numbers s') radiation intensity is calculated, terms of the order

2 2
of n2/1 contract. Therefore quantum corrections of the order of n2/1 can be

observed only if it were possible to distinguish phenomena connected with

transitions between ciruclar orbits, from phenomena connected with transitions

from a circular orbit to a noncircular one. All these refinements were made

in /4/.

In the present work we want to determine the total radiation intensity,

and then to examine in greater detail the problems connected with transitions

between circular and noncircular orbits. When determining the total radiating

intensity, it is simplest of all to calculate the problem in terms of Cartesian

coordinates (see #2). But when determining the probability of individual

transitions between orbits (#3), it is better to use cylindrical coordinates.

2. We want, first of all, to determine the total radiation intensity

of the frequency %,,\ For this purpose, limiting ourselves for the time

being to a constant homogeneous magnetic field, we shall solve our problem

by means of the Dirac equation in terms of Cartesian coordinates.
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Let us take the potential in the form of Av = Hx, Ax = AZ = 0.A

Then the wave functions of the electron is the solution of the Dirac equation

- c --_5 (t, I A)' + pmc 2"? (3)

and at the same time is an eigenfunction of the operator of the projection

of the kinetic impulse on the spin P, = ' V + A), of the

operator ( 
/

of the projection of the impulse on axis z, and of the

-" {'"i~ a" operator of the x coordinate of the center of rotation X -o l H -,!

which commutate with the Hamiltonian. It is easy to see that the wave

function has the form (see also /8-9/;

.~~~~~~~~ ·

s - s (a) A (s) H_- (;)

9 _'= _'- e-,K,'+,ky+,- (4) () B (s) Hi (c) (4)
/JIL~~Y~~~s em (e) A (s) Hi-, (c) 1

-sel (.) B (s) Hi (C) ; l

where

-I
k)e' =Vt eS (a) = Vk- (I 8-e K), (5) 

* As)=1/+(1 + s-~-).B(e) _ l

A (s) = 2( B()= 2I-S k )-6j
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(~)A is a polynomial, proportional to the Chevyshev-Hermite polynomial

Hi Y ~~~~~~~~~~~(7)/H,()- ¢1 (), " '7' 1{

and furthermore, c x /'' + kej'%,_X = eHI-J The energy of the

electrorinis equal to K : i=- ecIVk 2 + -I--=1-

1 is an interger, =0 .. the projection of the impulse on the spin

equals sltk, s =- 1, k- = / n+2I/, the impulse along the

field equals htk3\ and the x coordinate of the center of roration equals

k:,/ l In comparison with the usual representation of the matrices we have

replaced axj with ayl and ay\ with a.l Thus we have achieved the

elimination of imaginary values from matrices which characterize spin states.

Let us now take as a perturbation the energy of the interaction

of the electron with a radiated electromagnetic wave

- -e /2c t -+ etCt-I' (8u =- V -L V X Xc,

The properties of the Fourier amplitude of the photon field are presented,

for example, in /10/. The radiation frequency and the energy of the photon

are respectively equal to C¢x and ¢c.\~ Using the conventional apparatus

of perturbation theory, we find for the radiation intensity, averaging with

respect to the initial spin states of the electron and summating for the

polarization states of the photon:

ZJ K -x snI: , lion ~~~~~~~~~~~~~~~~~. (9)ir 
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By virtue of the laws of the conservation of energy I =- A:-x|

and of the impulse along the field k3 k3 + xcos 0, the [value

with the condition k3 0,\ is equal to

y' _--_ _/ _(I n 2 sn'[3 SintO k'- V (10)I

where V21i/K;\ besides, we have the condition kj = k2 + x sin sin?

(change of the x-Icoordinate of the center of rotation during radiation of

the photon). The projections of the matrix elements of the value Me¢x

will be equal to

= i {-ss'e,'A'B1 (l' - 1, 1) + ea'IB'AI (1', 1t- 1) - e''A'B/ (l - 1, 1) +

+ ss's'p[a'B'AI (', l -- I)}, (11)
c =-ss'ec'pA'BI ( - 1, ) - ec'PB'AI (, I - 1) -e''A'BI (I' - 1, 1)-

- ss 'a'x',B'A, (', I-1 ), (12)
a, =--s'e(x'PA'AI (' - 1, l - 1) + sea'PB'BI- ((,) -

s- s8'p'aA'AI ( - , t - 1) + s'e'P'xB'BI (t. 1), (13)

with s = sd = 1, and \

1(1',) v'r,'" H,(x = HiL (xv )x

rx.xptxi~4~$ - .~7~-Fi~P47x ...
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2.

X __ x2 tl-l')/2 X x 2

~. - ~, 'j; ,., ~,-.~-i(4) 

where ol-l) _ is a generalized Sonin-Laguerre polynomial. _

It is easy to verify that (9)jdoes not depend on the angle -a X2/:l

Therefore we immediately assume ?- r/2,i as a result of which we shall

have for planar motion (n/l 

I
I -I .. .~ -W-= -Ce' d-(cs -12+I122 X

- 47-T - MY Ot, ~~ K-.sia,3. ' 0,5)
jr-O r. S I- -± I~~

Summating for the spin states of the electron (when k = 0), 
I

we shall have

KK' -

y, I~,l, = ' 1~~~2 + lt l,){1a) 

(K(et ] -+~ ~~~~~~~~~._... .- --I -- XI 2K(|/ (rI_1)2+ 1( 1, 1)2) +
. 1) +(-1, 1)), (1W~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I',

,I 

......... ., -,
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______ KK'-k'

- -~X

whence

/~~~~~~~~~

*~ ~ ~ ~ ~~cl _I K .k,

- K ' '+ COS2 0KK kK 0 k2(j2)i'7

2KK 2
_+cos, EO[ ' (I((r, 1,1).- /(l+-1' 1,1)1 \)+

I"''- V1FI~~~tL-I) ~K-x sln2 O

1 2 inc1 7

We now take into account the fact that in this case '

and, in addition, assume that n' ( ) 2 -_.I. Then .........

SM0 si n' 0 \ (21)
xt s n t 'tsin

t
o I '11P ilsn

2y (I+ - -1

Z-'2/ :

K--" -2KK' yV--K K ' ~ ) (2

,. , ~ ~ ~ -' ,-.' eI #_k\
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Here,

( I t s

+ (ilir; o lllIt- 1, 1)21. (23)..

We now derive an asymptotic formula for Qp, (z)i which is

under the condition that m and p be small in comparison to c 1 and l/z.

make the substitution z= (_Ij and make use of integral representations

Sonin-Laguerre polynomials and Bessel functions:

t _ or , _ . _-1 7 _ _

· _~ ~ -v/a - I t- ~/ e/''7 ....- ~ -( '- C) ...- .. ,-2 ;-.........I4

where the contour C goes from - oo, bypasses t = 0 and t=l

positive direction, and goes away into -oo. . If we take into

. (25)

, . . . . . 2 ..+t . . (26)

in the

account that

we shall obtain, with a precision of up to terms of the order of n2 /l

Q,-, (' = n (--m p)! x

,-(C- Ad - ~.. (2-l/-%l~ 1--" '----~ "~'~-+-'"-l~t-o~rn----~-, -(P 2,+1

valid

We

for

I .
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We further take into account that, with the same precision,

_ . .. . . _ . _ ,~'1*

, (

Y,[no sinO0I + n4( sin O) + I')] (28) 0
j (l-(no sin 6) + Jn (,n sin r) ( 28)

and-...

(29)]

we shall find

. Zinn

(=m=n) II(--'.l)l=J(nfsin "--- ------.---s(n sin, - . -.. r- -I ',(o m =n) I11(1', 1) I=J, (no sin6) -AbIn (i - P2 stn203J4(nPsin 01,. Y30) - ---- ----- l

'a~~~~~~~~~~~~~~~~~o

. ... . .t 

*(p -n, m n+) 11(1'- 1- 1) = J..(n sinO) -

__ _ nsr Sin- ° -(r - 2

(p=in =n+ I) I(-P,/-l)[=Jn+l(n slnO)+ +

____n+2;i~sin~O~n~a~n~~Sifl~O)~~Ja~l~(?LP~Sifl~O)~+~8~~O~n~r(~L~S~n~)]v~~(33"
+ ~t' [~ sin 0 Jn+2'.lt~J sin O)--J.+.l-(ngB-sin-Oi)-+-~Esilu3-OJn-fr(n'[sin-G)~k--3P --.-.--

I ,

,, f
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having made use of recurrent relationships between Bessel functions. Collecting

all the terms, we shall obtain with the same precision

¢2 [~n... .. 2 -.~ ~~~~ - - .~ . ...am 0 ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~ ... . .. ..W( O ()-+p2JhnSsinin) -k

1 _n 2--(i+I')sin' 0
( S---i(sin O) ^ (fl. sin 0)-)(nP-sin~O)}. ---(34)---

Taking into account the fact that, for the most intensively radiated harmonic,

cos 2 o 0- p n-< u ,n' , ()..-. n (n) n", (X38

it is easy to find that the ratio of the corrective term to the basic one has

an order of n/l.

Analogously, it is easy to show that terms containing n /1 , n /1 3

etc., do not yield corrections higher than n /1 . Thus we arrive again at

the condition (1) - 1) Note in proofreading. At present the authors have

succeeded in calculating the value of the total radiation intensity with

2 e'c E'4' 55V3j t, E )2~
account taken of the terms of the order of n/l. W --3[1--/ a\) +,"'< 

3. Let us now turn to the calculation of quantum corrections with

account taken of heterogeneity of the magnetic field. We shall examine the

motion of the electron in an axially-symmetric magnetic field, which is

constant in time, and which depends on the radius in the vicinity of a

stationary orbit of the form H=constr-,IO<q< 1. ] Disregarding

spin effects, we limit ourselves in solving the problem to the relativistic

wave equation of Klein - Fok. We direct the magnetic field along the
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z axis:

_il,, - 12 -- vl)n
Ay~~, = F/ ' ~ H, = ! ! 2 - Ho = const

Ay -71- Ar ~~rq ''r ¢
(36)

(in the vicinity of a stationary orbit). Here the Klein - Fok equation has

the form:

(E2 -c2P2 - e2 A2 -- 2ec AP _- i 2p') 9 = 0.
· .~ 

(37) 1 . .. . . . ...

Restricting ourselves to the study of planar movement, we introduce,

for convenience, polar coordinates. It is natural to look for the solution

of equation (37) in the form:

1' = C_ R (r), (38) 1/

(I = 0, 1, 2, ' 1 .).
taking into account that '? is a cyclic coordinate . Then,

for ...... the radialfunctionsRweobtaintheequation

for the radial functions R, we obtain the equation

RI t 71:: nC _ a 2(A2 ) R-- = O, (39)
-- + K+ k c.hr c.4 . ,

which, when the function

to the form:

V1c,2/E u = V7R1J is introduced, is reduced

u" + f+f(r) u . (40) O
I~~~ ~ I -- I .

Let us further expand the function f(r) into a Taylor series according to

degrees of deviation from the position of equilibrium r - a, where a is defined

C

]I 71l l

i:'
_, . -,_ ..

.
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from the condition of extermum f(r):

(a\11/(2-q) ell,
-- f(I'_ 1), =-- -f (a) (41)'i

Assuming that the deviation x= r - a will be small (X/a<gl),1

we shall limit ourselves to a term which is quadratic with respect to .j

then for radial functions u we shall obtain the equation of a harmonic

oscillator:

- U"s+ (- p2 x2)u = O. (42)

The solution for this problem are the orthonormal Chebyshev-Hermite functions

u, = . a A e-('l/2)('-)' H(1 r-a). (43) . -.

where H
3 is a Chevyshev-Hermite polynomial, and, furthermore /P takes

the discrete values

c./ =2s+1, s=O, 1, 2,... (44)

From the latter relationship it is easy to find the eigen values for energy:

9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a2 I -- (2 - q) -;a- (45)T -Z-11~~~~~~~~~~~~~~~~~~

and for the radiation frequency we find the expression:
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(,,=n-ao(I + O (t)) wo= /a, it='V-, n + n q-S
tZ = l-l w tt -S-S .(4:6)

=

In the classical approximation (l--> oo) I

)n - LIV /a.

We now make a remark concerning the shape of the orbit. It follows

from equation (43) that small radial oscillations the amplitude of which can

be determined from the state of positiveness of coefficient x- ~x:2 and

has the form:

x =A a = a v _ q ·- *(47)1

are superimposed on the rorating motion of the electron with a circumference

of the radius a (/ (1 - q))I/I*q)l --..

In the classical approximation quantum number I = (cH9 /clh) (1 - q)a2 -q

will be considerably larger than S (hL->O, l->-c).\ Therefore the "washiness"

of the radius disappears, and the motion becomes circular.

We shall consider the problem of the electron radiation as its

interaction with a field of virtual photons; here we make calculations by the

method of the perturbation theory, limiting ourselves to the first approximation

and retaining in the perturbation energy only linear terms with respect to the

vector-potential AO,\which characterizes a photon field:

.~ L '. .+ 
A0 L} X (a+e'IK-x I+ Xrae-'cKt+4xr)8);LIS x l

K
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Then, for the differential value of radiation intensity in a unit of time

inside the solid angle dQ/ we obtain the expression

daw = 2; 2 (aP)(a+P)A, (49)i., (49) i .... 'a~P

where p is a matrix element of the impulse operator

P= 5''+e-.'rPgdr, P= V + e A,

and the wave functions- 9'+ and 9 are respectively equal to

,~~~~~~~~~~~~~~5)

~'+ = er .V (1', s'), ~ = ~2 R (l, s). (50) .,; 

By chosing spherical coordinates for the o, the unitary vector

which characteizes the radiation direction, and cylindrical coordinates for

P, and directing x01 into the plane yz, we find

(aP)(aj) =PI + cos2'P - (51)\ -

Here we disregard the projection of vector x0 on to-the z axis in comparison

with the other projections, on the basis of conclusions of the classical theory

which state that the radiation originates basically in a plane of electron

rotation (' J .I2) [' (see /4/). Then finally,

- X~d1'",' (it. -- cosOPp.) d... (5d)
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Turning to polar coordinates and disregarding the influence of the

impulse operator in a radial direction (r is replaced by the value of a, in

which ,1 reaches the-maximum), we obtain a simple expression for the

matrix element of operators Pal and PY:i

' -- _p=- l(a) aJl ca sin o) A, .5,px'- ,'' ' ' (,53)~
.~~~~~J (a, .1 ._ \.. .. 

e -IJ (~-a) }cJ,/ asin-6 Assert-
Y C si

n
( s )

.J

where J-4,- is a Bessel function,

A,, = I r R'dr \]/ rR'dr rR'2dr, (54)

and the radiation intensity of n the harmonic (n = 1 - 1') will be equal to

ce4n2 ti 2 (a) A,, ['J. (3' sin0) + J (' in)cg ] 

dW. J. .n, si ]d

d1Vn fli"J2(iiji'sinO~~~~~~) J(,I'-i&ctg2"-Q (55)'

d VVV

where OU, , C- .4,, ~ ~~ , ,'[ i . . . .' -

In order to find the spectral intensity distribution, we integrate

(55) with respect to the solid angle'df; after several transformations we

obtain
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,,,__cr"H2 (a) /I n

-- Wn-= E fi~ ~(} 'L1-/j-- 7 F2l32-(-±-+2--l- q'-J ________

2 _ 1/1' _Vq32) i2 (56)
., . . . .-

Here we have used the fact that ,):=1 =-- (n a n'+ 1- /q) 10.

In the ultra-relativistic case n'/n can be omitted in comparison to unity,

then W differs from the respective classical expression only by the
n

coefficient As2,:i
I V !

brn= wn..s,, , (57) 

where the summation must be made for index s'.

The calculation of coefficient A by means of the substitution of
Ss,

(43) in formula (54) yields

A,,, = (- i)"' er"-Z QW-") (Z),

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - i

where Q?,'"are generalized Sonin-Laguerre polynomials, and a z - (2-q) - '

If, for simplicity's sake, we examine radial transitions from the initial

circular orbit (s = 0, s' 0), coefficient As,\obtains the very simple

expression:

AL, = e
-

z zs ·
.. ~ (59) /

2
Summating A for s', we obtain unity, thus terms of the orderss'

2
of n /1 contract and do not influence the total intensity.

For the calculation of arbitrary transtions, replacing s by s',

coefficient A2 can be approximated precisely enough by the following
SSt
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expression

As, = J2-, (-V), (O0)1

where J.,7 is a Bessel function and X= -[l s+s '

Expanding (60) with respect to the value 11/1/1/ and giving index

s' the values s'=, s4-1, s,-2,I we come to the conviction that value

AS is equal to unity.

4. The cited calculations show that the relationship of quantum

corrections to classical terms in the total radiation intensity of the ..

glowing electron has the order of n/l or nlA/.a,/ where A-=- 2,hclE1 is the

de Broglie wave length of a moving electron. Corrections to the radiation

frequency with a given value of n also have the order of n/l. Therefore the

classical theory for determination of total radiation intensity can be applied

at energies of

, << ,nc2 (a/nc / h)i'r

In a recently published article /11/, the author found quantum

corrections for total radiation intensity of one electron. Here, his factor

2
of the order of n /1 (see /11/ formula (26a) appears even in the exponent.

In connection with this, he came to the conclusion that quantum corrections

already at comparatively low energies decrease the radiation intensity by

several times. This conclusion is linked to a series of inaccuracies

permitted by him in the approximate calculations. He assumes, for example,

that

(Z + 4!/I! c On,

\ _.:_ _ . . _ _ . . . _ _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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when actually this value is equal to

(l + n)! /l! = 1"¢"'s1

Besides, the author disregards in this work the transitions with a change

of the radial quantum number s, considering that they will yield terms of ?

the order of 1/1; in reality terms of the order of n /1 appear during

transitions from the circular orbit to a noncircular one, which was noted

already in work /7/. In the summation of intensities for all radial transitions

they contract, as it was shown in /4/.

Mr. A.I.:Morozov took part in the discussion on a series of problems

connected with the accounting of quantum corrections.

Moscow State University.
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